MATI D3 - Représentation et traitement des données
Master Sciences du langageParcours Sciences du langage et sciences des données
Description
- Accès aux données : bases de données versus données non structurées, comprendre les différences et comment cela impacte les traitements à mettre en œuvre.
- Notions de traitement d'images (quelques exemples de traitement à partir d’exemples d’IA utilisant les images : vision par ordinateur, reconnaissance d’objets ou de caractères, etc).
- Notions d'analyse de langage naturel/texte : types de données textuelles, pré-traitements spécifiques, enrichissement des données à l’aide d’outils de TAL (Traitement Automatique des Langues)
- Données géolocalisées
- Analyse de séries temporelles
Les séances de TP seront l’occasion de mettre en œuvre les méthodes vues en cours et en TD sur des données en liens forts avec les domaines d’applications des étudiants.
Compétences visées
Objectifs en termes de connaissances
- Savoir exploiter des données non structurées et structurées
- Connaître les traitements de base pour des données de différents types (images, textes, série temporelle, données géolocalisées)
- Savoir utiliser les outils informatiques pour mettre en œuvre ces traitements dans divers contextes applicatifs
Modalités d'organisation et de suivi
Semestre 3 du parcours AISD
Contacts
Responsable(s) de l'enseignement
MCC
Les épreuves indiquées respectent et appliquent le règlement de votre formation, disponible dans l'onglet Documents de la description de la formation.
- Régime d'évaluation
- ECI (Évaluation continue intégrale)
- Coefficient
- 1.0
Évaluation initiale / Session principale - Épreuves
Libellé | Type d'évaluation | Nature de l'épreuve | Durée (en minutes) | Coéfficient de l'épreuve | Note éliminatoire de l'épreuve | Note reportée en session 2 |
---|---|---|---|---|---|---|
Épreuve pratique | SC | A | 120 | 1.00 | ||
Premier examen écrit | SC | ET | 60 | 1.00 | ||
Second examen écrit | SC | ET | 60 | 1.00 |