MATI M2 - Méthodes d'apprentissage non supervisé et d'apprentissage profond
Master Sciences du langageParcours Sciences du langage et sciences des données
Description
Cet enseignement vise à faire connaître et savoir mettre en œuvre des méthodes d’apprentissage non-supervisé (clustering, association, motifs fréquents) et d’apprentissage profond (connaître la structure générale des réseaux de neurones et intérêt des réseaux de neurones convolutifs). Dans cette enseignement, les étudiants seront amenés à adapter et appliquer ces différentes méthodes sur des données d’applications variées.
Compétences visées
Objectifs en termes de connaissances
- Connaître les différents paradigmes de l'apprentissage non supervisé
- Comprendre les principales méthodes d'apprentissage non-supervisé et profond
Objectifs en termes de compétences
- Savoir utiliser les principales méthodes d'apprentissage non-supervisé et profond
Modalités d'organisation et de suivi
Semestre de printemps Master 1.
2h étudiant par semaine
Supports de cours et examens sur moodle
Contacts
Responsable(s) de l'enseignement
MCC
Les épreuves indiquées respectent et appliquent le règlement de votre formation, disponible dans l'onglet Documents de la description de la formation.
- Régime d'évaluation
- ECI (Évaluation continue intégrale)
- Coefficient
- 1.0
Évaluation initiale / Session principale - Épreuves
Libellé | Type d'évaluation | Nature de l'épreuve | Durée (en minutes) | Coéfficient de l'épreuve | Note éliminatoire de l'épreuve | Note reportée en session 2 |
---|---|---|---|---|---|---|
Épreuve pratique | SC | A | 120 | 1.00 | ||
Premier examen écrit | SC | ET | 60 | 1.00 | ||
Second examen écrit | SC | ET | 60 | 1.00 |